USTC-Team „AM“ | CIQTEK SEM unterstützt die mikroskopische Morphologieanalyse von Kaliummetallanoden
Das Team von Professor Yan Yu am USTC nutzte Die CIQTEK SEinmachenEElektronMMikroskop SEM3200 um die Morphologie nach dem Zyklus zu untersuchen. Es wurde amorpher Kohlenstoff mit kontrollierbaren Defekten als Kandidatenmaterial für eine künstliche Grenzflächenschicht entwickelt, die Kaliumophilie und katalytische Aktivität in Einklang bringt. Das Forschungsteam stellte eine Reihe von Kohlenstoffmaterialien mit unterschiedlichem Defektgrad her (bezeichnet als SC-X, wobei X die Karbonisierungstemperatur darstellt), indem es die Karbonisierungstemperatur regulierte. Die Studie ergab, dass SC-800 mit übermäßigen Defekten eine erhebliche Elektrolytzersetzung verursachte, was zu einem ungleichmäßigen SEI-Film und einer verkürzten Lebensdauer führte. SC-2300, mit den wenigsten Defekten, hatte eine unzureichende Affinität zu Kalium und induzierte leicht Kaliumdendritenwachstum. SC-1600, das eine lokal geordnete Kohlenstoffschicht besaß, zeigte eine optimierte Defektstruktur und erreichte das beste Gleichgewicht zwischen Kaliumophilie und katalytischer Aktivität. Es konnte die Elektrolytzersetzung regulieren und einen dichten und gleichmäßigen SEI-Film bilden. Die experimentellen Ergebnisse zeigten, dass SC-1600@K eine Langzeitzyklusstabilität von bis zu 2000 Stunden bei einer Stromdichte von 0,5 mA cm aufwies.-2 und einer Kapazität von 0,5 mAh cm-2. Selbst bei höherer Stromdichte (1 mA cm-2) und Kapazität (1 mAh cm-2) behielt es eine hervorragende elektrochemische Leistung mit stabilen Zyklen von über 1300 Stunden bei. Im Vollzellentest behielt es in Kombination mit einer positiven PTCDA-Elektrode nach 1500 Zyklen bei einer Stromdichte von 1 A/g eine Kapazitätserhaltung von 78 % bei und demonstrierte damit eine hervorragende Zyklenstabilität. Diese Forschung mit dem Titel„Ausgleich von Kaliumophilie und katalytischer Aktivität einer künstlichen Grenzflächenschicht für dendritenfreie Natrium/Kalium-Metallbatterien“,wurde veröffentlicht inFortschrittliche Materialien.Abbildung 1:Die Ergebnisse der Mikrostrukturanalyse von Kohlenstoffproben (SC-800, SC-1600 und SC-2300), die bei unterschiedlichen Karbonisierungstemperaturen hergestellt wurden, werden vorgestellt. Mittels Techniken wie Röntgenbeugung (XRD), Raman-Spektroskopie, Röntgen-Photoelektronenspektroskopie (XPS) und Weitwinkel-Röntgenstreuung (WAXS) wurden die Kristallstruktur, der Defektgrad sowie die Sauerstoff- und Stickstoffdotierung dieser Proben analysiert. Die Ergebnisse zeigten, dass mit steigender Karbonisierungstemperatur die Defekte in den Kohlenstoffmaterialien allmählich abnahmen und die Kristallstruktur geordneter wurde. Abbildung 2:Die Stromdichteverteilung während des Kaliummetallwachstums auf verschiedenen negativen Verbundelektroden wurde mittels Finite-Elemente-Simulation analysiert. Die Simulationsergebnisse zeigten, dass die Verbundelektrode SC-1600@K während der Kaliumabscheidung eine gleichmäßige Stromverteilung aufwies, was zur wirksamen Unterdrückung des dendritischen Wachstu...