Untersuchung von EPR-Signalen in Korallen – EPR (ESR)-Anwendungen
Der Name Koralle kommt vom altpersischen sanga (Stein), dem gebräuchlichen Namen für die Korallenwurmgemeinschaft und ihr Skelett. Korallenpolypen sind Korallen des Stammes Acanthozoa mit zylindrischen Körpern, die aufgrund ihrer Porosität und ihres verzweigten Wachstums auch lebende Felsen genannt werden und von vielen Mikroorganismen und Fischen bewohnt werden können. Wird hauptsächlich im tropischen Ozean wie dem Südchinesischen Meer produziert. Die chemische Zusammensetzung der weißen Koralle besteht hauptsächlich aus CaCO 3 und enthält organische Stoffe vom Carbonattyp. Goldene, blaue und schwarze Korallen bestehen aus Keratin, dem sogenannten Keratin-Typ. Rote Korallen (einschließlich rosa, fleischrot, rosarot, hellrot bis tiefrot) beherbergen sowohl CaCO 3 als auch mehr Keratin. Koralle nach den Merkmalen der Skelettstruktur. Kann in vier Kategorien von Plattenbettkorallen, Vierschusskorallen, Sechsschusskorallen und Achtschusskorallen unterteilt werden, moderne Korallen sind hauptsächlich die beiden letztgenannten Kategorien. Korallen sind ein wichtiger Träger zur Erfassung der Meeresumwelt, da sie für die Bestimmung der Paläoklimatologie, der Änderung des Meeresspiegels in der Antike und der tektonischen Bewegung sowie für andere Studien von großer Bedeutung sind.
Die paramagnetische Elektronenresonanz (EPR oder ESR) ist ein wichtiges Instrument zur Untersuchung ungepaarter Elektronenmaterie, bei der die Energieniveausprünge ungepaarter Elektronen bei bestimmten Resonanzfrequenzen in einem variablen Magnetfeld gemessen werden. Derzeit sind die Hauptanwendungen der EPR in der Korallenanalyse die Analyse und Datierung der Meeresumwelt. Beispielsweise hängt das EPR-Signal von Mn 2+ in Korallen mit dem Paläoklima zusammen. Das EPR-Signal von Mn 2+ ist während der Warmzeit groß und nimmt bei starker Abkühlung stark ab. Als typisches marines Karbonatgestein werden Korallen durch natürliche Strahlung beeinflusst und erzeugen Gitterdefekte, die EPR-Signale erzeugen. Daher können sie auch zur Datierung und absoluten Chronologie mariner Karbonatgesteine verwendet werden. Die EPR-Spektren von Korallen enthalten eine Fülle von Informationen über die Konzentration ungepaarter Elektronen, die durch Gitter- und Verunreinigungsdefekte in der Probe eingefangen werden, die Mineral- und Verunreinigungszusammensetzung der Probe und damit Informationen über das Entstehungsalter und die Kristallisationsbedingungen der Probe gleichzeitig erhalten werden.
Als nächstes wird das EPR-Signal in der Koralle mit einem CIQTEK X-Band EPR (ESR)-Spektroskopiegerät EPR100 analysiert, um Informationen über die Zusammensetzung und Defektstellen in der Koralle zu liefern.
CIQTEK X-Band EPR100
Experimentelle Probe
Die Probe wurde aus weißen Korallen im Südchinesischen Meer entnommen, mit 0,1 mol/L verdünnter Salzsäure behandelt, mit einem Mörser zerkleinert, gesiebt, bei 60 °C getrocknet, wog etwa 70 mg und wurde auf dem CIQTEK EPR100 getestet.
Weiße Korallenprobe
Elektronenparamagnetische Resonanzspektroskopie
Der CIQTEK EPR100 wurde verwendet, um das EPR-Signal in weißen Korallen zu testen. Um eine genaue Messung des EPR-Signals zu erreichen, waren die spezifischen Versuchsbedingungen wie folgt.
Experimentelle Bedingungen
Experimentelle Ergebnisse und Analyse
Die Struktur von Korallen variiert je nach Art und in den EPR-Spektren von Korallen sind normalerweise Spektrallinienüberlagerungen vorhanden. Die experimentell gemessenen Signale in Korallenknochenproben können durch den Vergleich von Informationen aus der Literatur von freien CO 2 -Ionenradikalen abgeleitet werden. Mn 2+ in Korallen wird normalerweise mit der Rekristallisation von Korallen und der Ablagerung von sekundärem Calcit in Verbindung gebracht, während Spurenmengen von Mn 2+ auch die Produktion paramagnetischer Zentren beeinflussen, weshalb Mn 2+ üblicherweise zur Erkennung der Rekristallisation von Proben verwendet wird. Das sechsfache Peaksignal von Mn 2+ wurde im Experiment nicht beobachtet.
EPR-Spektren von weißen Korallen, erfasst mit CIQTEK EPR100
Schlussfolgerungen
Korallen-EPR-Tests (ESR) werden derzeit hauptsächlich für die Analyse und Datierung des Meeresumweltklimas verwendet. Mn 2+ in Karbonatkristallen wie Korallen ist paramagnetisch und seine sechs hyperfeinen strukturellen Spektrallinien sind leicht zu identifizieren. EPR-Tests beziehen sich hauptsächlich auf Mn 2+ auf Karbonatgittern, und einige Studien haben gezeigt, dass der Mn 2+ -Gehalt mit Veränderungen des Paläoklimas zusammenhängt. Da Karbonatgitter- und Verunreinigungsdefekte in Korallen außerdem ungepaarte Elektronen einfangen und diese ungepaarten Elektronenkonzentrationen mit natürlichen und jährlichen Strahlungsdosisraten korreliert werden können, werden sie außerdem häufig für EPR-Datierungen im Millionen-Jahres-Bereich verwendet.
Der CIQTEK EPR100 zeichnet sich durch hohe Empfindlichkeit, hohe Gleichmäßigkeit des Magnetfelds und hohe Stabilität aus und kann mit einer Vielzahl leistungsstarker EPR-Sonden sowie Licht-, Niedertemperatur- und Eckgeräten ausgestattet werden, um den Kundenanforderungen für eine Vielzahl allgemeiner kontinuierlicher Anwendungen gerecht zu werden -Wellen- und gepulste EPR-Messungen, und die EPR-Pro-Software bietet einen schnellen experimentellen Ablauf und Funktionen zur wissenschaftlichen Datenanalyse, um Benutzern die schnelle Etablierung experimenteller EPR-Methoden zu erleichtern.
Verweise:
1. Strzelczak, Grazyna et al. „Multifrequenz-EPR-Untersuchung von Carbonat- und Sulfat-Radikalen, die durch Strahlung in Muscheln und Korallit entstehen.“ Radiation Research 155.4(2001):619-624.
2. Seletchi, ED und OG Duliu. „Vergleichende Studie zu ESR-Spektren von Carbonaten.“ Rumänische Zeitschrift für Physik 52.5-7 (2007): S. 657-666.
3. Ye Yuguang, Zhou Shiguang, Liu Xinbo. „Das ESR-Signal von Mn 2+ in Korallenriffen und seine paläoklimatischen Auswirkungen.“ Ocean and Limnology 000.005(1998):547.
4. Li Jianping, Diao Shaobo, Liu Chunru, He Xingliang. „Anwendung der ESR-Datierung bei der Karbonatdatierung im Meer.“ Frontiers in Marine Geology 31.010(2015):65-70.
X-Band-Tischspektrometer für Elektronenspinresonanz oder Elektronenspinresonanz (EPR, ESR) Der CIQTEK EPR200M ist ein neu gestaltetes Tisch-EPR-Spektrometer spezialisiert auf die qualitative und quantitative Analyse von freie Radikale, Übergangsmetallionen, Materialdotierung und Defekte . Es ist ein hervorragendes Forschungsinstrument für die Echtzeitüberwachung chemischer Reaktionen, die eingehende Bewertung von Materialeigenschaften und die Erforschung von Schadstoffabbaumechanismen in den Umweltwissenschaften. Der EPR200M zeichnet sich durch sein kompaktes Design aus und integriert Mikrowellenquelle, Magnetfeld, Sonde und Hauptsteuerung optimal. Dies gewährleistet Empfindlichkeit und Stabilität und ist gleichzeitig für vielfältige experimentelle Anforderungen geeignet. Die benutzerfreundliche Oberfläche ermöglicht auch Einsteigern einen schnellen Einstieg und macht das EPR-Gerät besonders benutzerfreundlich. ★ Senden Sie unseren Experten eine E-Mail, um individuelle Lösungen, Angebote oder ausführliche Broschüren anzufordern: info@ciqtek.com
Erfahren Sie mehrDie CIQTEK EPR200-Plus-Spektroskopie bietet professionelle kontinuierliche paramagnetische Elektronenresonanz-Lösungen für industrielle und akademische Anwender. EPR200-Plus Zubehör: Dual-Mode-Resonator, Hochtemperatursystem, flüssiger Stickstoff mit variabler Temperatur mit Kryostat, flüssiges Helium mit variabler Temperatur, flüssiges heliumfreies Trockenkryogensystem, zeitaufgelöstes EPR-System , Goniometer, Bestrahlungssystem, Flachzelle. Elektronenparamagnetische Resonanz (EPR) oder Elektronenspinresonanz (ESR)-Spektroskopie ist eine leistungsstarke Analysemethode zur Untersuchung der Struktur, Dynamik und räumlichen Verteilung ungepaarter Elektronik in paramagnetischen Substanzen. Es kann in-situ und zerstörungsfreie Informationen über Elektronenspins, Orbitale und Kerne auf mikroskopischer Ebene liefern. Die EPR-Spektroskopie ist besonders nützlich für die Untersuchung von Metallkomplexen oder organischen Radikalen und hat daher wichtige Anwendungen in den Bereichen Chemie, Materialien, Physik, Umwelt usw.
Erfahren Sie mehrHochfrequenz- und Hochfeldpulse Elektronenspinresonanz (EPR) im W-Band (94 GHz) Die Hochfrequenz-EPR-Technologie bietet zahlreiche Vorteile, wie beispielsweise eine hohe g-Wert-Auflösung und ein minimales Probenvolumen. Sie ist in der Biologie, Chemie und Materialwissenschaft sehr gut anwendbar. CIQTEK EPR-W900 unterstützt sowohl Dauerstrich- als auch gepulste EPR-Messungen, einschließlich ENDOR und ermöglicht Experimente mit variablen Temperaturen von 4 bis 300 K. Es ist mit einem Split-Pair-Supraleitermagneten mit einem maximalen Magnetfeld von bis zu 6 T ausgestattet. Der Supraleitermagnet, kombiniert mit einem kryogenfreien Kryosystem, stabilisiert die Temperatur im Supraleiterbereich, ohne flüssiges Helium zu verbrauchen, und gewährleistet so einen stabilen Betrieb und eine einfache Wartung. Die EPR-Softwareplattform ist dieselbe wie beim CIQTEK X-Band-Pulsspektrometer und daher einfach und benutzerfreundlich.
Erfahren Sie mehrCIQTEK X-Band-Puls-Elektronenspinresonanzspektrometer (EPR oder ESR) EPR100 unterstützt sowohl Dauerstrich-EPR- als auch Puls-EPR-Funktionen Neben der Unterstützung konventioneller Dauerstrich-EPR-Experimente kann der EPR100 auch Elektronenspin-Quantenzustände mithilfe spezifischer Pulssequenzen präzise steuern und messen. Dies ermöglicht Puls-EPR-Tests wie T1, T2, ESEEM (Elektronen-Spin-Echo-Hüllkurvenmodulation), HYSCORE (Hyperfein-Subniveau-Korrelation) usw. Das EPR100-Gerät bietet eine umfassende Palette an Optionales Zubehör , wie zum Beispiel ENDOR-, DEER-, TR-EPR- und AWG-Module , die die Anforderungen aller aktuellen gepulsten EPR-Experimentiermodi vollständig erfüllen. In Kombination mit einem variables Temperatursystem ermöglicht es die Erkennung paramagnetischer Substanzen bei ultratiefen Temperaturen. Die gepulste EPR-Spektroskopie liefert höhere spektrale Auflösung , die die Hyperfeinwechselwirkungen zwischen Elektronen und Atomkernen aufdecken und detailliertere Strukturinformationen liefern. Diese Fähigkeit ist in wissenschaftlichen Forschungsbereichen wie der Materialwissenschaft, der biomolekularen Strukturanalyse usw. unersetzlich und von entscheidender Bedeutung.
Erfahren Sie mehrModernisieren und rüsten Sie Ihre alte EPR-Spektroskopie für modernste EPR-Forschung auf Diese Modernisierung bringt Ihnen Funktionen wie : ▶ Höhere Empfindlichkeit: Mikrowellenquelle und Signalerkennungstechnologie mit extrem geringem Rauschen ▶ Bessere Auflösung: Präzise Magnetfeld-Steuerungstechnologie ▶ Hervorragende Kompatibilität: Kompatibel mit einer Vielzahl von EPR-Spektrometern ▶ Schnelle Lieferung: Komplettlieferung der modernisierten Hardware innerhalb von 2-6 Monaten ▶ Hochwertiger Service: Vor-Ort-Installation und 2 Jahre Garantie ★ Senden Sie uns eine E-Mail für weitere Details: info@ciqtek.com
Erfahren Sie mehrDer CIQTEK EPR300 Das EPR-Spektrometer (Electron Paramagnetic Resonance) enthält die neueste Mikrowellentechnologie und eine ultrahoch-Leistung-Signal-Signal-Verarbeitungseinheit, wodurch die Erkennungsempfindlichkeit und ein Signal-Rausch-Verhältnis zu einem beispiellosen Niveau signifikant verbessert werden Es ermöglicht eine präzise Erkennung und Analyse ungepaarter Elektronensignale auch bei extrem niedrigen Spinkonzentrationen und bietet einen neuen Ansatz zur Erforschung mikroskopischer physikalischer und chemischer Eigenschaften von Substanzen mit niedriger Konzentration wie freien Radikalen und Metallionen Darüber hinaus unterstützt der EPR300 einfache Upgrades von X Band bis Q BandErziel höherer G-Wert-Auflösung, was für die Erkennung anisotropen Proben von Vorteil ist Der EPR300 stellt eine solide experimentelle Grundlage für die modernste Forschung in Biowissenschaften, Materialwissenschaft, Chemie und Physik her und treibt wissenschaftliche Entdeckungen zu neuen Meilensteinen.
Erfahren Sie mehr