Erforschung von Reis – Anwendungen des Rasterelektronenmikroskops (REM).
Was ist gealterter Reis und neuer Reis? Gealterter Reis oder alter Reis ist nichts anderes als eingelagerter Reis, der ein oder mehrere Jahre lang gelagert wird. Andererseits ist neuer Reis Reis, der aus neu geernteten Feldfrüchten hergestellt wird. Im Vergleich zum frischen Aroma von neuem Reis ist gealterter Reis leicht und geschmacklos, was im Wesentlichen auf eine Veränderung der inneren mikroskopischen morphologischen Struktur von gealtertem Reis zurückzuführen ist.
Die Forscher analysierten neuen und gealterten Reis mit dem CIQTEK-Wolframfilament-Rasterelektronenmikroskop SEM3100. Mal sehen, wie sie sich in der mikroskopischen Welt unterscheiden!
CIQTEK Wolframfilament-Rasterelektronenmikroskop SEM3100
Abbildung 1 Bruchmorphologie im Querschnitt von neuem und gealtertem Reis
Zunächst wurde die Mikrostruktur des Reisendosperms mit SEM3100 beobachtet. Aus Abbildung 1 ist ersichtlich, dass die Endospermzellen von neuem Reis lange, polygonale, prismatische Zellen waren, in die Stärkekörner eingewickelt waren, und dass die Endospermzellen in einer radialen Fächerform angeordnet waren, wobei die Mitte des Endosperms konzentrische Kreise bildete Die Endospermzellen in der Mitte waren im Vergleich zu den äußeren Zellen kleiner. Die radialfächerförmige Endospermstruktur von neuem Reis war deutlicher zu erkennen als die von gealtertem Reis.
Abbildung 2 Mikrostrukturmorphologie des zentralen Endosperms von neuem und gealtertem Reis
Eine weitere vergrößerte Betrachtung des zentralen Endospermgewebes von Reis ergab, dass die Endospermzellen im zentralen Teil von gealtertem Reis stärker gebrochen waren und die Stärkekörner stärker freigelegt waren, wodurch die Endospermzellen radial und unscharf angeordnet waren.
Abbildung 3 Mikrostrukturmorphologie des Proteinfilms auf der Oberfläche von neuem und gealtertem Reis
Der Proteinfilm auf der Oberfläche der Endospermzellen wurde bei hoher Vergrößerung beobachtet, wobei die Vorteile von SEM3100 mit hochauflösender Bildgebung genutzt wurden. Wie aus Abbildung 3 hervorgeht, konnte auf der Oberfläche von neuem Reis ein Proteinfilm beobachtet werden, während der Proteinfilm auf der Oberfläche von gealtertem Reis gebrochen war und unterschiedlich starke Verwerfungen aufwies, was zu einer relativ klaren Freilegung der inneren Stärkekörnchen führte Form aufgrund der Verringerung der Dicke des Oberflächenproteinfilms.
Abbildung 4 Mikrostruktur der Endosperm-Stärkekörnchen von neuem Reis
Reis-Endospermzellen enthalten einzelne und zusammengesetzte Amyloplasten. Einzelkorn-Amyloplasten sind kristalline Polyeder, oft in Form einzelner Körner mit stumpfen Winkeln und deutlichen Lücken zu den umgebenden Amyloplasten, die hauptsächlich kristalline und amorphe Bereiche enthalten, die aus geradkettiger und verzweigtkettiger Amylose bestehen [1,2]. Die komplexkörnigen Amyloplasten haben eine eckige Form, sind dicht angeordnet und fest mit den umgebenden Amyloplasten verbunden. Studien haben gezeigt, dass die Stärkekörner von hochwertigem Reis hauptsächlich als komplexe Körner vorliegen [3]. Bei der Betrachtung der Endospermzellen von neuem Reis, wie in Abbildung 4 dargestellt, lagen die Stärkekörner größtenteils in Form zusammengesetzter Körner vor. Die zusammengesetzten Stärkekörner hatten eine eckige Form und waren eng mit den umgebenden Stärkekörnern verbunden, was die Endospermstruktur von hochwertigem Reis zeigte.
Die Reisqualität kann sich während der Lagerung ändern. Mit zunehmender Lagerzeit, zunehmender Härte des Reises, abnehmender Viskosität und Elastizität und schlechterem Geschmack stehen diese Qualitätsveränderungen in engem Zusammenhang mit morphologischen und strukturellen Merkmalen wie der Form und Anordnung der Endospermzellen [4].
Die Mikrostruktur eines Materials bestimmt seine verschiedenen Eigenschaften, und es sind diese Unterschiede in der Mikrostruktur, die dazu führen, dass der Reis, den wir täglich essen, unterschiedliche Geschmackswerte aufweist. Die Rasterelektronenmikroskopie als mikroskopisches Analyseinstrument ermöglicht nicht nur verschiedene Formen der Beobachtung von Lebensmittelmaterialien, sondern bietet auch eine zuverlässige Grundlage für die Lebensmittelforschung und spielt eine wichtige Rolle bei der Prüfung der Lebensmittelsicherheit und Qualitätsverbesserung.
Verweise.
[1] Mohapatra D, Bal S. Kochqualität und instrumentelle Texturattribute von gekochtem Reis für verschiedene Mahlfraktionen [J]. Journal of Food Engineering, 2006, 73(3):253-259.
[2] Zhou Xianqing, Zhang Yurong, Li Rit. Mikrostrukturelle Veränderungen des Endosperms von Japonica-Reis unter verschiedenen simulierten Lagerbedingungen[J]. Zeitschrift für Agrartechnik, 2010(5):6.
[3] Fu Wenying, Xiang Yuanhong. Mikrostruktur des Endosperms von essbarem Qualitätsreis[J]. Zeitschrift der Hunan Agricultural University: Natural Science Edition, 1997, 23(5):8.
[4] Xu M, Cheng WD, Cai XH, et al. Einfluss der Lagerung auf Stärkestruktur und -gehalt von Reis[J]. Chinese Agronomy Bulletin, 2005, 21(6):113-113.
CIQTEK SEM5000 ist ein Feldemissions-Rasterelektronenmikroskop mit hochauflösender Bildgebung und Analysefähigkeit, unterstützt durch zahlreiche Funktionen, profitiert vom fortschrittlichen Elektronenoptik-Säulendesign, mit Hochdruck-Elektronenstrahl-Tunneltechnologie (SuperTunnel), geringer Aberration und Nicht-Eintauchen Die Objektivlinse ermöglicht eine hochauflösende Bildgebung bei niedriger Spannung und die magnetische Probe kann ebenfalls analysiert werden. Mit optischer Navigation, automatisierten Funktionen, einer sorgfältig gestalteten Benutzeroberfläche für die Mensch-Computer-Interaktion und einem optimierten Betriebs- und Nutzungsprozess können Sie unabhängig davon, ob Sie ein Experte sind oder nicht, schnell loslegen und hochauflösende Bildgebungs- und Analysearbeiten abschließen.
Erfahren Sie mehrCIQTEK SEM5000 ist ein Feldemissions-Rasterelektronenmikroskop mit hochauflösender Bildgebung und Analysefähigkeit, unterstützt durch zahlreiche Funktionen, profitiert vom fortschrittlichen Elektronenoptik-Säulendesign, mit Hochdruck-Elektronenstrahl-Tunneltechnologie (SuperTunnel), geringer Aberration und Nicht-Eintauchen Die Objektivlinse ermöglicht eine hochauflösende Bildgebung bei niedriger Spannung und die magnetische Probe kann ebenfalls analysiert werden. Mit optischer Navigation, automatisierten Funktionen, einer sorgfältig gestalteten Benutzeroberfläche für die Mensch-Computer-Interaktion und einem optimierten Betriebs- und Nutzungsprozess können Sie unabhängig davon, ob Sie ein Experte sind oder nicht, schnell loslegen und hochauflösende Bildgebungs- und Analysearbeiten abschließen.
Erfahren Sie mehrStabil, vielseitig, flexibel und effizient Das CIQTEK SEM4000X ist ein stabiles, vielseitiges, flexibles und effizientes Feldemissions-Rasterelektronenmikroskop (FE-SEM). Es erreicht eine Auflösung von 1,9 nm bei 1,0 kV und meistert problemlos hochauflösende Bildgebungsherausforderungen für verschiedene Arten von Proben. Es kann mit einem Ultrastrahl-Verzögerungsmodus aufgerüstet werden, um die Niederspannungsauflösung noch weiter zu verbessern. Das Mikroskop nutzt Multi-Detektor-Technologie mit einem säuleninternen Elektronendetektor (UD), der SE- und BSE-Signale erkennen kann und gleichzeitig eine hochauflösende Leistung bietet. Der in der Kammer montierte Elektronendetektor (LD) enthält Kristallszintillator- und Photomultiplierröhren und bietet eine höhere Empfindlichkeit und Effizienz, was zu stereoskopischen Bildern mit hervorragender Qualität führt. Die grafische Benutzeroberfläche ist benutzerfreundlich und verfügt über Automatisierungsfunktionen wie automatische Helligkeit und Kontrast, Autofokus, automatische Stigmierung und automatische Ausrichtung, die eine schnelle Aufnahme von Bildern mit ultrahoher Auflösung ermöglichen.
Erfahren Sie mehrStabil, vielseitig, flexibel und effizient Das CIQTEK SEM4000X ist ein stabiles, vielseitiges, flexibles und effizientes Feldemissions-Rasterelektronenmikroskop (FE-SEM). Es erreicht eine Auflösung von 1,9 nm bei 1,0 kV und meistert problemlos hochauflösende Bildgebungsherausforderungen für verschiedene Arten von Proben. Es kann mit einem Ultrastrahl-Verzögerungsmodus aufgerüstet werden, um die Niederspannungsauflösung noch weiter zu verbessern. Das Mikroskop nutzt Multi-Detektor-Technologie mit einem säuleninternen Elektronendetektor (UD), der SE- und BSE-Signale erkennen kann und gleichzeitig eine hochauflösende Leistung bietet. Der in der Kammer montierte Elektronendetektor (LD) enthält Kristallszintillator- und Photomultiplierröhren und bietet eine höhere Empfindlichkeit und Effizienz, was zu stereoskopischen Bildern mit hervorragender Qualität führt. Die grafische Benutzeroberfläche ist benutzerfreundlich und verfügt über Automatisierungsfunktionen wie automatische Helligkeit und Kontrast, Autofokus, automatische Stigmierung und automatische Ausrichtung, die eine schnelle Aufnahme von Bildern mit ultrahoher Auflösung ermöglichen.
Erfahren Sie mehrLeistungsstarkes und universelles Wolframfilament-REM-Mikroskop Das CIQTEK SEM3200 REM-Mikroskop ist ein hervorragendes Allzweck-Rasterelektronenmikroskop (REM) mit Wolframfilamenten und herausragenden Gesamtfunktionen. Seine einzigartige Doppelanoden-Elektronenkanonenstruktur gewährleistet eine hohe Auflösung und verbessert das Signal-Rausch-Verhältnis des Bildes bei niedrigen Anregungsspannungen. Darüber hinaus bietet es eine große Auswahl an optionalem Zubehör, was das SEM3200 zu einem vielseitigen Analysegerät mit hervorragenden Erweiterbarkeiten macht.
Erfahren Sie mehrUltrahochauflösende Feldemissions-Rasterelektronenmikroskopie (FESEM) Fordert die Grenzen heraus Der CIQTEK SEM5000X ist ein FESEM mit ultrahoher Auflösung und optimiertem Elektronenoptik-Säulendesign, das die Gesamtaberrationen um 30 % reduziert und eine ultrahohe Auflösung von 0,6 nm bei 15 kV und 1,0 nm bei 1 kV erreicht . Seine hohe Auflösung und Stabilität machen es vorteilhaft für die fortgeschrittene nanostrukturelle Materialforschung sowie die Entwicklung und Herstellung von High-Tech-Node-Halbleiter-IC-Chips.
Erfahren Sie mehrHohe Auflösung bei geringer Anregung Das CIQTEK SEM5000Pro ist ein Schottky Feldemissions-Rasterelektronenmikroskop (FE-SEM), das auf hohe Auflösung auch bei niedriger Anregungsspannung spezialisiert ist. Der Einsatz einer fortschrittlichen „Super-Tunnel“-Elektronenoptik-Technologie ermöglicht einen kreuzungsfreien Strahlengang zusammen mit einem elektrostatisch-elektromagnetischen Verbundlinsendesign. Diese Fortschritte reduzieren den räumlichen Aufladungseffekt, minimieren Linsenaberrationen, verbessern die Bildauflösung bei niedriger Spannung und erreichen eine Auflösung von 1,2 nm bei 1 kV, was die direkte Beobachtung nichtleitender oder halbleitender Proben ermöglicht und so die Probenmenge effektiv reduziert Strahlenschäden.
Erfahren Sie mehrFeldemissions-Rasterelektronenmikroskop (FE-SEM) mit Focused Ion Beam (FIB)-Säulen Das CIQTEK DB550 Focused Ion Beam Scanning Electron Microscope (FIB-SEM) verfügt über eine fokussierte Ionenstrahlsäule für die Nanoanalyse und Probenvorbereitung. Es nutzt die „Supertunnel“-Elektronenoptiktechnologie, geringe Aberration und ein nichtmagnetisches Objektivdesign und verfügt über die Funktion „Niederspannung, hohe Auflösung“, um seine Analysefähigkeiten im Nanomaßstab sicherzustellen. Die Ionensäulen ermöglichen eine Ga+-Flüssigmetall-Ionenquelle mit äußerst stabilen und qualitativ hochwertigen Ionenstrahlen, um die Fähigkeit zur Nanofabrikation sicherzustellen. Der DB550 ist eine All-in-one-Nanoanalyse- und Fertigungs-Workstation mit integriertem Nanomanipulator, Gasinjektionssystem und benutzerfreundlicher GUI-Software.
Erfahren Sie mehrHochgeschwindigkeits-Rasterelektronenmikroskop für die skalenübergreifende Abbildung von großvolumigen Proben CIQTEK HEM6000 verfügt über Technologien wie die hochhelle Großstrahl-Stromelektronenkanone, ein Hochgeschwindigkeits-Elektronenstrahl-Ablenksystem, eine Hochspannungs-Probentischverzögerung, eine dynamische optische Achse und ein elektromagnetisches und elektrostatisches Immersions-Kombinationsobjektiv um eine schnelle Bildaufnahme zu erreichen und gleichzeitig eine Auflösung im Nanomaßstab sicherzustellen. Der automatisierte Betriebsprozess ist für Anwendungen wie einen effizienteren und intelligenteren großflächigen hochauflösenden Bildgebungsworkflow konzipiert. Die Abbildungsgeschwindigkeit kann mehr als fünfmal schneller sein als bei einem herkömmlichen Feldemissions-Rasterelektronenmikroskop (FESEM).
Erfahren Sie mehrAnalytisches Feldemissions-Rasterelektronenmikroskop (FESEM) mit großem Strahl I CIQTEK SEM4000Pro ist ein analytisches Modell des FE-SEM, ausgestattet mit einer hochhellen und langlebigen Schottky-Feldemissions-Elektronenkanone. Das dreistufige elektromagnetische Linsendesign bietet erhebliche Vorteile bei analytischen Anwendungen wie EDS/EDX, EBSD, WDS und mehr. Es ist standardmäßig mit einem Niedervakuummodus und einem leistungsstarken Niedervakuum-Sekundärelektronendetektor sowie einem einziehbaren Rückstreuelektronendetektor ausgestattet, der die Beobachtung schlecht leitender oder nicht leitender Proben erleichtert.
Erfahren Sie mehrWolframfilament-Rasterelektronenmikroskop der nächsten Generation Das CIQTEK SEM3300 Rasterelektronenmikroskop (REM) beinhaltet Technologien wie „Super-Tunnel“-Elektronenoptik, Inlens-Elektronendetektoren und elektrostatische und elektromagnetische Verbundobjektive. Durch die Anwendung dieser Technologien im Wolfram-Filament-Mikroskop wird die seit langem bestehende Auflösungsgrenze solcher REM übertroffen, sodass das Wolfram-Filament-REM Analyseaufgaben bei niedriger Spannung ausführen kann, die zuvor nur mit Feldemissions-REM möglich waren.
Erfahren Sie mehr120-kV-Feldemissions-Transmissionselektronenmikroskop (TEM) 1. Geteilte Arbeitsbereiche: Benutzer bedienen TEM in einem getrennten Raum mit Komfort, der Umwelteinflüsse auf TEM reduziert. 2. Hohe betriebliche Effizienz: Spezielle Software integriert hochautomatisierte Prozesse und ermöglicht eine effiziente TEM-Interaktion mit Echtzeitüberwachung. 3. Verbesserte Betriebserfahrung: Ausgestattet mit einer Feldemissions-Elektronenkanone mit einem hochautomatisierten System. 4. Hohe Erweiterbarkeit: Es sind ausreichend Schnittstellen reserviert, damit Benutzer auf eine höhere Konfiguration upgraden können, die den unterschiedlichen Anwendungsanforderungen gerecht wird.
Erfahren Sie mehr